Heart failure-associated changes in RNA splicing of sarcomere genes.

نویسندگان

  • Sek Won Kong
  • Yong Wu Hu
  • Joshua W K Ho
  • Sadakatsu Ikeda
  • Sean Polster
  • Ranjit John
  • Jennifer L Hall
  • Egbert Bisping
  • Burkert Pieske
  • Cristobal G dos Remedios
  • William T Pu
چکیده

BACKGROUND Alternative mRNA splicing is an important mechanism for regulation of gene expression. Altered mRNA splicing occurs in association with several types of cancer, and a small number of disease-associated changes in splicing have been reported in heart disease. However, genome-wide approaches have not been used to study splicing changes in heart disease. We hypothesized that mRNA splicing is different in diseased hearts compared with control hearts. METHODS AND RESULTS We used the Affymetrix Exon array to globally evaluate mRNA splicing in left ventricular myocardial RNA from controls (n=15) and patients with ischemic cardiomyopathy (n=15). We observed a broad and significant decrease in mRNA splicing efficiency in heart failure, which affected some introns to a greater extent than others. The profile of mRNA splicing separately clustered ischemic cardiomyopathy and control samples, suggesting distinct changes in mRNA splicing between groups. Reverse transcription-polymerase chain reaction validated 9 previously unreported alternative splicing events. Furthermore, we demonstrated that splicing of 4 key sarcomere genes, cardiac troponin T (TNNT2), cardiac troponin I (TNNI3), myosin heavy chain 7 (MYH7), and filamin C, gamma (FLNC), was significantly altered in ischemic cardiomyopathy and in dilated cardiomyopathy and aortic stenosis. In aortic stenosis samples, these differences preceded the onset of heart failure. Remarkably, the ratio of minor to major splice variants of TNNT2, MYH7, and FLNC classified independent test samples as control or disease with >98% accuracy. CONCLUSIONS Our data indicate that mRNA splicing is broadly altered in human heart disease and that patterns of aberrant RNA splicing accurately assign samples to control or disease classes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aberrant developmental titin splicing and dysregulated sarcomere length in Thymosin β4 knockout mice

Sarcomere assembly is a highly orchestrated and dynamic process which adapts, during perinatal development, to accommodate growth of the heart. Sarcomeric components, including titin, undergo an isoform transition to adjust ventricular filling. Many sarcomeric genes have been implicated in congenital cardiomyopathies, such that understanding developmental sarcomere transitions will inform the a...

متن کامل

RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing.

Mutations in the gene encoding the RNA-binding protein RBM20 have been implicated in dilated cardiomyopathy (DCM), a major cause of chronic heart failure, presumably through altering cardiac RNA splicing. Here, we combined transcriptome-wide crosslinking immunoprecipitation (CLIP-seq), RNA-seq, and quantitative proteomics in cell culture and rat and human hearts to examine how RBM20 regulates a...

متن کامل

Heart Failure Role of RBM25/LUC7L3 in Abnormal Cardiac Sodium Channel Splicing Regulation in Human Heart Failure

Background—Human heart failure is associated with decreased cardiac voltage-gated Na channel current (encoded by SCN5A), and the changes have been implicated in the increased risk of sudden death in heart failure. Nevertheless, the mechanism of SCN5A downregulation is unclear. A number of human diseases are associated with alternative mRNA splicing, which has received comparatively little atten...

متن کامل

Pathophysiological Defects and Transcriptional Profiling in the RBM20-/- Rat Model

Our recent study indicated that RNA binding motif 20 (Rbm20) alters splicing of titin and other genes. The current goals were to understand how the Rbm20(-/-) rat is related to physiological, structural, and molecular changes leading to heart failure. We quantitatively and qualitatively compared the expression of titin isoforms between Rbm20(-/-) and wild type rats by real time RT-PCR and SDS a...

متن کامل

Deep RNA Sequencing Reveals Novel Cardiac Transcriptomic Signatures for Physiological and Pathological Hypertrophy

Although both physiological hypertrophy (PHH) and pathological hypertrophy (PAH) of the heart have similar morphological appearances, only PAH leads to fatal heart failure. In the present study, we used RNA sequencing (RNA-Seq) to determine the transcriptomic signatures for both PHH and PAH. Approximately 13-20 million reads were obtained for both models, among which PAH showed more differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation. Cardiovascular genetics

دوره 3 2  شماره 

صفحات  -

تاریخ انتشار 2010